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ABSTRACT fore be helpful to develop sugarcane cultivars that pro-
duce high yields with less P fertilizer or cultivars thatRapid screening for high leaf P concentration may help sugarcane
take up more soil P. Sugarcane in the EAA obtains 30(interspecific hybrids of Saccharum spp.) growers in the Everglades

Agricultural Area reduce P in discharge water, an important compo- to 85% of its total P from soil P that was originally in
nent of Everglades restoration. The purpose of this study was to the organic form but is mineralized to a plant-available
evaluate near-infrared reflectance spectroscopy (NIRS) as a potential form during the sugarcane growth cycle (Anderson,
tool to analyze sugarcane leaf P concentration. Local calibrations for 1990). Under well-drained conditions, cultivated Histo-
samples with similar spectral characteristics were calculated using sols mineralize 6 to 87 kg P ha�1 yr�1 (Diaz et al., 1993).
modified partial least-squares regression for the following categories: Phosphorus fertilizer rates are recommended to opti-
parents, offspring, fertilizer rate, and water table. Additionally, global

mize sugarcane yields according to foliar analysis usingcalibrations were calculated for 11 groupings of these local categories.
wet chemistry digestion, coupled with proper interpreta-Analyses for much of the study found that the most accurate local
tion of soil testing (Elwali and Gascho, 1984; Anderson,calibration was that of fertilizer rate, with R 2 � 0.90 and ratio of
1990; Glaz et al., 1997). Using traditional chemical diges-standard deviation (s ) to standard error of cross validation � 2.17.

However, further multiplicative scatter correction of spectral data and tion and analytical procedures for plant P concentration,
the elimination of unneeded wavelength segment points by Martens however, is time consuming and expensive (Malley et
Uncertainty regression with software that became available later in al., 2000; Gillon et al., 1999). Perhaps foliar diagnosis
the study resulted in nearly perfect prediction equations, with r 2 � of leaf P would be more widely used if results were
0.99 and ratio of s to standard error of prediction � 32.0 for the more rapidly available so that corrective measures could
offspring local equation and the parents � fertilizer rate � water table be taken before P deficiencies caused yield losses.
global equation. These results show that researchers not obtaining

Near-infrared reflectance spectroscopy is a rapid ana-calibrations at desired levels of accuracy with NIRS should try to
lytical method for measuring the chemical compositioneliminate unneeded wavelength segments. Use of NIRS is proposed
of materials and requires only simple sample prepara-as a tool to provide rapid, accurate measurements of sugarcane leaf
tion. Covalent bonds between light atoms such as C, N,P content for characterizing commercial cultivars and for screening

for high-P cultivars in breeding programs. H, O, and P generally absorb energy in the infrared
region where they have fundamental vibrational fre-
quencies and combination overtones detectable in the
near-infrared region (400–2500 nm) (Malley et al., 2000;Sugarcane is the primary crop of the Everglades
Gillon et al., 1999).Agricultural Area (EAA) in South Florida, grown

Calibration of a near-infrared spectrometer is an in-on approximately 134 000 ha of Histosols (Glaz, 2000).
ferential process of deriving models that relate spectralPhosphorus deficiency of sugarcane in the EAA may
readings of samples to values determined by referenceresult in reduced cane tonnage, particularly in ratoon
chemistry. Calibration involves the selection of repre-crops (Gascho and Kidder, 1979; Glaz et al., 2000). Con-
sentative samples, acquiring spectra and reference anal-trarily, excessive P increases cane tonnage, with a corre-
yses, data preparation, and statistical modeling and vali-lated decrease in sugar concentration, or simply de-
dation. To minimize interference from the spectra ofcreases sugar concentration (Gascho and Kidder, 1979;
strongly overlapping constituents and from light scatterGlaz and Ulloa, 1994; Glaz et al., 2000). Excessive P
variations, spectral data from many different wave-application also may contribute to P enrichment of sur-
lengths are combined by various methods, includingface water (Coale et al., 1994). Most virgin Florida His-
multiple stepwise linear regression, partial least squares,tosols contain from 50 to 1360 mg P kg�1 (Chen and
and principal-component analysis (De Boever et al.,Ma, 2001), with a majority of the P tied up in organic
1994; Givens and Deaville, 1999).compounds. Differences in P uptake among sugarcane

Two broad categories of calibration equations havecultivars could lead to the annual removal of 8.5 kg P
been used by researchers: local and global equations.ha�1 from EAA soils (Glaz et al., 1997). It would there-
Local equations are models developed for sample popu-
lations expected to have similar spectral characteristics,M. Chen, R.A. Gilbert, and S.H. Daroub, Everglades Res. and Educ.

Cent., Univ. of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL whereas global equations are progressively more univer-
33430; B. Glaz, USDA-ARS Sugarcane Field Stn., 12990 U.S. Highway
441, Canal Point, FL 33438; F.E. Barton II, USDA-ARS Quality

Abbreviations: EAA, Everglades Agricultural Area; NIRS, near-Assessment Res., 950 College Station Rd., Athens, GA 30605; and
infrared reflectance spectroscopy; RPD, ratio of standard deviation ofY. Wan, South Florida Water Manage. District, 3301 Gun Club Rd.,
the prediction set to standard error of prediction; s, standard deviation;West Palm Beach, FL 33416. Received 4 Sept. 2001. *Corresponding
SEC, standard error of calibration; SECV, standard error of crossauthor (mchen@mail.ifas.ufl.edu).
validation; SEP, standard error of prediction; SNV-D, standard nor-
mal variant and detrend.Published in Agron. J. 94:1324–1331 (2002).
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ment was planted near Canal Point, FL, on 4 June 1999 on asal models developed from sample populations of
Torry muck soil (Euic, hyperthermic Typic Haplosaprist). Nobroader spectral diversities (Gillon et al., 1999). Both
P fertilizer was added to this experiment. Leaf samples werelocal and global strategies have been used to predict N,
collected on 8, 20, and 27 Sept. 1999 and 17 Nov. 1999. LeafP, and other minerals in a variety of plants (Clark et
samples from this and all other experiments were collectedal., 1987; Vazquez de Aldana et al., 1995; Foley et al.,
between 0900 h and 1500 h from the leaf immediately below1998; Gillon et al., 1999; Ruano-Ramos et al., 1999). the top visible dewlap and contained the midrib. This experi-

Abrams et al. (1987) and Shenk and Westerhaus (1993) ment contained plots of clonally propagated genotypes that
concluded that broad-based equations are potentially were used in biparental crosses to generate genetically unique
as accurate as more local equations and offer the advan- progeny planted from seeds. There were four male parents
tage of reducing the rather large effort required to as- and five female parents, resulting in 20 crosses. The parents
semble a calibration set and perform conventional wet were planted in four replications, at the rate of 10 stools per
chemistry analyses to develop calibration equations. replication. The offspring were also planted in four replica-

tions; each plot of offspring had up to 25 genetically uniqueGillon et al. (1999) found that the accuracy of global
plants from a biparental cross. Initially, two NIRS local calibra-calibrations is not systematically better than local cali-
tion categories were developed from this experiment, parentsbrations though all of the global calibrations increased
and offspring. Chemical and NIRS analyses were conductedin robustness as they were valid for a wider range of
on 125 randomly selected samples of parents and 318 randomlyconcentrations of a constituent for spectrally heteroge-
selected samples of offspring (Table 1).neous materials. The successful estimation of mineral

Offspring was later divided into two categories. One cate-elements by NIRS may depend on the occurrence of gory was offspring for which one chemical analysis (one sub-
these elements in either organic or hydrated molecules sample) was conducted from the plant material analyzed in
(Clark et al., 1987; Vazquez de Aldana et al., 1995). each scanned sample. The second category was offspring for

Phosphorus is important in the formation of nucleic which four chemical analyses (four subsamples) were con-
acids, phytate, and phospholipids (De Boever et al., ducted per scanned sample. There were 262 samples in the
1994). However, the wavelengths chosen for P calibra- first offspring category and 56 in the second (Table 1).

A second experiment was performed to characterize the leaftion of plant tissue using NIRS were not similar to those
P concentration of eight clonally propagated, high-yieldingat which NIRS responses were noted when scanning
genotypes. An additional factor in this experiment was P fertil-phytate, potassium phosphate, or calcium phosphate
izer rate: 0, 24, and 48 kg P ha�1. This experiment was planted(Clark et al., 1987). Calibrations obtained for total P in
on 22 Nov. 1995 near South Bay, FL, about 6 km north ofplant tissue were considered acceptable by Shenk et al.
the southernmost area where sugarcane is produced in Palm(1981), Clark et al. (1987), Gillon et al. (1999), and
Beach County, on a Dania muck soil (Euic, hyperthermic,Ruano-Ramos et al. (1999) but needed further develop-
shallow Lithic Haplosaprist). Samples were collected on 9 Julyment in studies reported by Shenk and Westerhaus 1996 and 19 Aug. 1996. Local calibrations from this experiment

(1993) and Vazquez de Aldana et al. (1995). Although were classified as fertilizer rate. Chemical and NIRS analyses
expandable equations for P concentrations in a variety were conducted on 98 randomly selected fertilizer rate sam-
of forage, barley (Hordeum vulgare L.), corn (Zea mays ples (Table 1).
L.), oat (Avena sativa L.), rye (Secale cereale L.), silage, The local calibration for water table was derived from two
sorghum [Sorghum bicolor (L.) Moench], and wheat experiments, which were conducted to determine the response

of several high-yielding genotypes to three summer water ta-(Triticum aestivum L.) samples have been documented
bles. One experiment was planted 6 Feb. 1997 and the secondby researchers as well as by NIRS instrument companies
on 19 Jan. 1999 on a Pahokee muck soil (Euic, hyperthermic(Clark et al., 1987; Batten, 1998), there are no reports
Lithic Haplosaprist) about 12 km southeast of South Bay, FL.of NIRS calibration equations to predict P in sugarcane
Phosphorus fertilizer was applied to all plots in all experimentsleaves. However, Meyer (1998) reported varying de-
at the rate of 13 kg P ha�1. Samples were collected from thegrees of success for predicting N and Si in sugarcane
first-ratoon growth from the first water table experiment onleaves and other sugarcane traits such as photosynthesis 20 May 1998 and from the plant cane growth from the secondrate, cane yield, and sugar content. water table experiment on 8 Oct. 1999. The first experiment

The purpose of this study was to evaluate NIRS as a contained nine and the second experiment 12 clonally propa-
potential tool for analysis of sugarcane leaf P concentra- gated genotypes grown on three target summer water tables
tion. Such information hopefully will help in developing of 15, 38, and 61 cm below the soil surface. Chemical and NIRS
successful foliar diagnosis, which could be useful for
clonal screening in sugarcane breeding programs as well Table 1. Sample number (n), range, mean, and standard deviation
as for P recommendation in sugarcane production. (s) of reference chemistry values for five populations used for

near-infrared spectroscopy calibration development for sugar-
cane leaf P concentration.

MATERIALS AND METHODS Calibration n Range Mean s s/Mean

Field Experiments g P kg�1

Parents 125 0.81–1.99 1.35b† 0.24 0.18The relationship between reference chemistry and NIRS
Offspring one subsample 262 0.12–2.17 1.34b 0.32 0.24

prediction of sugarcane leaf P concentration was determined Offspring four subsamples 56 0.96–1.97 1.38b 0.22 0.16
with leaf samples from three field experiments with a wide Fertilizer rate 98 1.18–3.45 2.09a 0.51 0.24

Water table 142 0.55–1.88 1.41b 0.21 0.15range of genetic material and agronomic conditions for sugar-
cane in Florida. One experiment was designed to estimate the † Different letters in the same column indicate significant difference at

� � 0.05 (t test).heritability of leaf P concentration in sugarcane. This experi-
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Table 2. Calibration statistics of near-infrared reflectance spectroscopy with traditional chemistry analyses for sugarcane leaf P concentra-
tion using WinISI II software for five single categories (local equations) and 11 combinations of categories (global equations).

Category n† s‡ SEC§ SECV¶ R2 s/SECV Math# Scatter††

g P kg�1

Parents (PA) 66 0.25 0.16 0.18 0.59 1.39 0,4,4,1 SNV-D
Offspring (one subsample) (O1) 191 0.24 0.21 0.22 0.19 1.09 0,4,4,1 SNV-D
Offspring (four subsamples) (O) 44 0.23 0.18 0.22 0.37 1.05 2,4,4,1 None
Fertilizer rate (F) 71 0.52 0.17 0.24 0.90 2.17 2,4,4,1 SNV-D
Water table (W) 53 0.29 0.09 0.13 0.89 2.23 2,4,4,1 None
PA � O 102 0.23 0.16 0.19 0.36 1.21 1,4,4,1 SNV-D
PA � F 133 0.52 0.22 0.25 0.82 2.08 1,4,4,1 SNV-D
PA � W 116 0.22 0.18 0.19 0.38 1.16 0,4,4,1 SNV-D
O � F 111 0.54 0.21 0.27 0.85 2.00 2,4,4,1 SNV-D
O � W 93 0.22 0.19 0.19 0.28 1.16 0,4,4,1 None
F � W 118 0.50 0.17 0.20 0.89 2.50 1,4,4,1 SNV-D
PA � O � F 171 0.49 0.20 0.25 0.82 1.96 2,4,4,1 SNV-D
PA � O � W 155 0.23 0.19 0.19 0.30 1.21 1,8,8,1 SNV-D
PA � F � W 179 0.47 0.21 0.23 0.80 2.04 1,8,8,1 None
O � F � W 141 0.49 0.20 0.24 0.83 2.04 1,4,4,1 SNV-D
PA � O � F � W 216 0.44 0.22 0.24 0.78 1.83 1,4,4,1 None

† Number of samples used for calibration development selected by the computer software.
‡ s, standard deviation.
§ SEC, standard error of calibration.
¶ SECV, standard error of cross validation.
# The first number is the order of the derivative; the second is the segment length in data points over which the derivative was taken; and the third (first

smooth) and fourth (second smooth) are the segment lengths over which the function was smoothed. The setting of 1 for the second smooth indicates
that there was no second smooth.

†† SNV-D, standard normal variant and detrend; none, no scatter option.

analyses were conducted on 142 randomly selected water table for each sample was used for calibrations and predictions. For
the offspring, parent, and water table experiments, 0.3 g of leafsamples (Table 1).
tissue was digested using sulfuric acid and hydrogen peroxide
(Lowther, 1980). For the fertilizer rate experiment, 0.1 g ofSpectrometry Measurements and Analyses
leaf tissue was digested using nitric acid in microwave bombs

Sugarcane leaf samples were dried at 60�C, ground in a (Amana Radarange, Amana, IA) at 70% power for 4 min and
stainless-steel mill to pass a 1-mm screen, and then scanned then at 100% power for 2 min (Rechcigl and Payne, 1990).
with a NIRS instrument (Model 6500, Foss NIRSystems, Silver After digestion, P concentration was determined by a modified
Spring, MD). Two replicated measurements of monochro- molybdenum blue procedure (Murphy and Riley, 1962) at
matic light from a single sample cup were made at 2-nm inter- 880 nm using a spectrophotometer (Spectronic 20 Genesys,
vals from 400 to 2500 nm to produce an average spectrum Spectronic Instruments, Rochester, NY). Quality control sam-
with 1050 data points. Reflectance (R) was converted to ab- ples were included to verify that there were no significant
sorbance (A) using the following equation: differences between the two digestion methods.

A � log(1/R)
Near-Infrared Reflectance Spectroscopy CalibrationCalibrations were first conducted using the WinISI II (Foss

of PhosphorusNIRSystems, Silver Spring, MD) software package.
Local calibrations were produced from the following catego- Calibrations were developed for leaf P concentration (Pleaf)

ries: parents, offspring (one subsample per NIRS scanned measured in grams per kilogram using a modified partial least-
sample), offspring (four subsamples per NIRS scanned sam- squares regression method (Shenk and Westerhaus, 1991).
ple), fertilizer rate, and water table. Eleven progressively The following model was used:
global calibrations were produced using various combinations
of these categories (Table 2). The offspring data set with Pleaf � b0 � b1A1 � b2A2 � . . . � bnAn
four subsamples per sample was used in all global equations

where A1, A2, . . . , An are n independent spectral variables,developed with WinISI that included offspring. Principal-com-
each with a combination of one or more spectral values (ab-ponent analyses were performed on each data set before cali-
sorbance); b1, b2, . . . , bn are n partial regression coefficients;bration. The WinISI II software was used to rank spectra in
and b0 is the intercept.a file according to their standardized Mahalanobis distance

Two different software programs were used to develop thesefrom the average spectra of the file. If the standardized dis-
chemometric models using all spectral and chemical data. Thetance of a sample was �3.0, the sample was considered as an
WinISI II software used modified partial least-squares regres-outlier and eliminated (Shenk and Westerhaus, 1991).
sion to compare spectra and reference chemistry values and
ultimately to predict NIRS P values using all wavelength seg-Reference Chemistry Analysis of Phosphorus ments between 400 and 2500 nm. Later, Unscrambler software
(Version 7.6, CAMO, Trondheim, Norway) was used. TheChemical analyses were conducted on three subsamples for

each scanned sample in the fertilizer rate and water table mathematical preprocessing used in the Unscrambler software
was the multiplicative scatter correction with no derivativescategories. Only one chemical analysis (one subsample) was

done per scanned sample for the parent category and the on the log(1/R) data. The multivariate method of partial least
squares as described by Martens and Naes (1989) was used foroffspring category with 262 samples (Table 1). Four chemical

analyses (four subsamples) per scanned sample were con- predicting P concentration (dependent variable) from NIRS
spectra with Unscrambler. The model was further refined byducted on samples in the second offspring set. Whenever more

than one subsample was conducted, the mean of subsamples the use of Martens Uncertainty regression, in which those
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wavelength segments (x variable) that were statistically not P concentration in sugarcane leaves from the parent,
being helpful to the full-spectrum model were removed. the offspring, and the water table categories were simi-

Cross validation was used to estimate the optimum number lar. Mean P concentration differed by about 1 s for the
of samples in each calibration to avoid overfitting. This con- leaves sampled from the fertilizer rate category com-
sisted of a form of Monte Carlo simulation, in which the pared with the other categories. Cumulative frequencypopulation was arbitrarily divided into a small number of

plots indicated that the parents and water table catego-groups and a prediction was made of the values for one group
ries were from similar populations, whereas the off-based on calibrations developed from the remaining groups.
spring and fertilizer rate categories were not (data notIn turn, overall predictions were made for groups with the
shown). However, all mean values were within rangesmean of predictions for all groups (Shenk and Westerhaus,

1993). It is through this procedure that the WinISI II software of leaf P concentration previously reported for sugar-
calculated the standard error of cross validation (SECV) on cane in the EAA (Anderson, 1990; Glaz et al., 1997).
independent samples.

During the calculations of cross validations, one of every Near-Infrared Reflectance Spectroscopyfour samples was randomly reserved from the ordered data
Calibration of Phosphorus in Sugarcane Leavessets. The algorithm was repeated four times, and all residuals

with No Wavelength Segments Eliminatedof the four predictions were pooled to provide a SECV and
R2 on independent samples. The final model was then recalcu- Using principal-component analysis to measure the
lated with all of the samples to obtain the standard error of distance of each sample from the center of the spectralcalibration (SEC).

hypersphere, it was shown that samples from each cate-For each calibration, six mathematical treatments (0,4,4,1;
gory had similar spectral characteristics (data not0,8,8,1; 1,4,4,1; 1,8,8,1; 2,4,4,1; and 2,8,8,1) combined with two
shown). Four (0,4,4,1; 1,4,4,1; 1,8,8,1; and 2,4,4,1) of thescatter correction options, standard normal variant and de-
six mathematical treatments in combination with twotrend (SNV-D) or none, were compared across the entire

spectrum (400–2500 nm) at 8-nm intervals. The first number scatter options (SNV-D or none) resulted in the most
of the mathematical treatment is the order of the derivative accurate calibration for each local or global calibration
function; the second is the segment length in data points over (Table 2). Often with NIRS, as occurred in this study,
which the derivative was taken; and the third (first smooth) optimum calibrations are obtained with various mathe-
and fourth (second smooth) are the segment lengths over matical treatments. These mathematical treatments
which the function was smoothed. The setting of one for the were similar to those of 1,8,8,1; 2,8,8,1; and 2,4,4,1 re-second smooth indicates that there was no second smooth.

ported by Gillon et al. (1999) for P prediction in hetero-The standard normal variant option scaled each spectrum to
geneous plant materials from different categories.have a s of 1.0 and helped reduce particle size effects. A

Calibration equations developed for P concentrationdetrending procedure removed or reduced the linear and qua-
dratic curvature of each spectrum. Calibration equations were in sugarcane leaves from different categories were char-
judged for accuracy on the basis of their values of R2 and acterized by their SEC, SECV, and R2 (Table 2). Among
s/SECV (Gillon et al., 1999). global equations, R2 ranged from 0.28 for the offspring �

water table equation to 0.89 for the fertilizer rate �
Near-Infrared Reflectance Spectroscopy Prediction water table equation. The R2 values of local equations

of Phosphorus ranged from 0.19 for the offspring equation calculated
After choosing a calibration equation for each local or with one subsample to 0.90 for the fertilizer rate equa-

global category, the equation was tested for accuracy in pre- tion. The ratios of s/SECV ranged from 1.05 to 2.50 for
dicting the sugarcane leaf P concentration of independent all local and global categories. Six equations, two local
samples. This process included using part of the samples for (the fertilizer rate and the water table) and four glob-
calibration and the rest for prediction. In the current study, al (the parents � fertilizer rate, the fertilizer rate �only four of every five samples were randomly selected for

water table, the offspring � fertilizer rate, and the off-calibration, and the fifth sample was reserved for prediction.
spring � fertilizer rate � water table), had R2 � 0.82Shenk and Westerhaus (1993) reserved one in six, and Gillon
and s/SECV � 2.0 (Table 2).et al. (1999) reserved one in four samples in similar studies.

Nine equations had R2 � 0.78 and SEC � 0.22Relationships between NIRS-predicted P (y) and reference
chemistry P (x) from both WinISI II and Unscrambler are (Table 2). These R2 and SEC values were more accurate
shown by simple linear regression: than those reported by Vazquez de Aldana et al. (1995)

and Ruano-Ramos et al. (1999) for P in forage andy � a � bx
grassland samples. Ruano-Ramos et al. (1999) con-

where b is the regression coefficient and a is the intercept. cluded that their calibrations were useful for determin-The ratio of standard error of prediction (SEP) to s of the
ing P concentrations of semiarid grasslands used forprediction set (sx ), sx/SEP, is RPD (Williams, 1987). The RPD
grazing regimes. The calibrations reported here wereand r 2 values were used to assess the suitability of predic-
less accurate than those reported by Saiga et al. (1989)tion equations.
and Gillon et al. (1999) in heterogeneous plant ma-
terials.RESULTS AND DISCUSSION

Ruano-Ramos et al. (1999) and De Boever et al.
Sugarcane Leaf Phosphorus Concentration (1994) reported specific wavelengths for estimation ofby Reference Chemistry P in grasses and vegetable feedstuffs. For other ele-

ments, a theoretical basis associating minerals and or-Leaf samples from four populations of sugarcane
were analyzed by reference chemistry (Table 1). Mean ganic functional groups has led to the use of certain
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Table 3. Prediction statistics for sugarcane leaf P concentration using equations developed from near-infrared reflectance spectroscopy
(NIRS) calibrations using WinISI II software for five single categories (local equations) and 11 combinations of categories (global
equations).

Chemistry NIRS

Category n† x̄‡ sx§ ȳ‡ sy§ b¶ SEP# RPD†† r 2

g P kg�1

Parents (PA) 25 1.38 0.23 1.40 0.24 0.71 0.17 1.35 0.53
Offspring (one subsample) (O1) 53 1.32 0.36 1.38 0.11 0.81 0.35 1.03 0.06
Offspring (four subsamples) (O) 12 1.42 0.29 1.47 0.48 0.30 0.38 0.76 0.18
Fertilizer rate (F) 22 2.09 0.50 2.11 0.43 0.71 0.27 1.85 0.69
Water table (W) 29 1.27 0.19 1.22 0.13 0.70 0.17 1.12 0.22
PA � O 37 1.37 0.29 1.38 0.14 0.66 0.28 1.04 0.10
PA � F 48 1.59 0.46 1.68 0.47 0.78 0.31 1.48 0.63
PA � W 53 1.30 0.22 1.34 0.15 0.85 0.19 1.16 0.31
O � F 33 1.75 0.46 1.85 0.47 0.82 0.28 1.64 0.69
O � W 39 1.34 0.19 1.32 0.12 0.44 0.19 1.00 0.08
F � W 51 1.76 0.52 1.70 0.53 0.89 0.27 1.93 0.76
PA � O � F 46 1.62 0.46 1.72 0.48 0.82 0.28 1.64 0.71
PA � O � W 64 1.30 0.21 1.31 0.13 0.84 0.18 1.17 0.26
PA � F � W 75 1.49 0.42 1.44 0.39 0.91 0.24 1.75 0.71
O � F � W 62 1.61 0.54 1.61 0.44 1.03 0.29 1.86 0.72
PA � O � F � W 86 1.45 0.38 1.46 0.34 0.92 0.22 1.73 0.66

† Number of samples used for prediction.
‡ x̄ and ȳ, arithmetic mean.
§ sx and sy, standard deviation.
¶ b, regression coefficient.
# SEP, standard error of prediction.
†† RPD, ratio of SEP to sx.

wavelength ranges with NIRS. For example, Ca and Mg increase, provided there was satisfied precision of test-
are associated with components of the cell wall. Calcium ing by chemical and NIRS methods.
pectate may bind plant cells and has a reflectance spec-
trum in the near-infrared region (Vazquez de Aldana Near-Infrared Reflectance Spectroscopyet al., 1995). The chlorophyll bands in the near-infrared Prediction of Phosphorus in Sugarcane Leavesregion reported by Clark et al. (1987) were also close

with No Wavelength Segments Eliminatedto the 2076 nm wavelength at which Vazquez de Aldana
et al. (1995) had success calibrating Mg in grass samples. Calibration equations were used to predict leaf P con-
For our sugarcane samples, the equations developed by centration in samples that had not been used in the
NIRS with the WinISI II software were more accurate calibrations. Statistics were calculated to assess the accu-
when the entire spectrum from 400 to 2500 nm was used racy of these predictions using the WinISI II software
rather than when we selected wavelengths previously (Table 3). Acceptable predictions were characterized
determined successful for P. by low values of SEP and high values of r 2 and RPD.

Most sugarcane research and commercial production At least one global equation was found that included
is conducted with small numbers of clones. For example, water table � fertilizer rate, with or without parents,
12 cultivars (each a clone) were grown on 80% of Flori- or offspring that had r 2 � 0.71 and RPD � 1.75.
da’s sugarcane production area in 2000 (Glaz, 2000). Vazquez de Aldana et al. (1995) reported an r 2 of
About 10 clones were used in each of the equations that 0.53 and SEP of 0.31 g P kg�1 tissue for predicting P in
calibrated P concentration for the parents, the fertilizer grasses with NIRS. Similarly, Ruano-Ramos et al. (1999)
rate, and the water table. However, every plant used to reported r 2 values between 0.49 and 0.77 and SEP valuesgenerate the offspring equations was a genetically in the range of 0.17 to 0.26 g P kg�1 tissue for predictingunique individual. The R2 values were particularly low

P concentration in grasses with NIRS. Compared toin the initial NIRS calibrations for P when using the
these previous studies, most of our SEP values wereoffspring, whether generated by samples from one or
similar, and nine of our equations had similar r2 valuesfour subsamples (Table 2).
(0.53 � r 2 � 0.75). Malley et al. (2000) reported thatFertilizer rate was the most useful local calibration
for agricultural applications, it is desirable to have r 2 �to use as a component in global equations before we
0.95 and RPD � 5.0. For screening, they suggestedremoved unneeded wavelength segments. Combining
RPD � 2.5. Most NIRS work to analyze P in plant tissuespectral and chemical data from the fertilizer rate exper-
has not yet met those standards. The most accurate localiment with data from other experiments generally in-
prediction equation using all wavelength segments increased R2 and s/SECV values for parents, offspring,
the present study was for the fertilizer rate, and theand water table. This is possibly due to increased range,
most accurate global equation was for the fertilizermean, and variation in sugarcane leaf P concentrations
rate � water table (Table 3 and Fig. 1 and 2). The lowestfor fertilizer rate where mean � 2.09 g P kg�1 and s �
standards set by Malley et al. (2000) were not met in0.52 g P kg�1 (Table 1). Williams (1987) concluded that

as the s increased, the R2 could also be expected to either of those prediction equations.
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Fig. 2. Relationship between near-infrared reflectance spectroscopyFig. 1. Relationship between near-infrared reflectance spectroscopy
(NIRS)–predicted P and reference chemistry P in sugarcane leaves(NIRS)–predicted P and reference chemistry P in sugarcane leaves
from global calibration of fertilizer rate and water table usingfrom local fertilizer rate calibration using simple linear regression.
simple linear regression.

Near-Infrared Reflectance Spectroscopy tilizer rate, and water table were not substantially im-Calibration and Prediction of Phosphorus after proved by Martens Uncertainty (Tables 2, 3, and 4). InEliminating Unneeded Wavelength Segments each of these three local categories, treatments consisted
of about 10 vegetatively propagated clones. In the off-Martens Uncertainty regression was later used as an

additional step for preprocessing of the spectral data spring category, each sample was of a genetically unique
individual. The most robust global calibration includedbefore developing models by partial least-squares re-

gression (Martens and Naes, 1989). By removing wave- parents, fertilizer rate, and water table and resulted in
RPD � 49.0 and r 2 � 0.99 (Table 4 and Fig. 3). Gener-length segments that were not helpful to their respective

models, Martens Uncertainty regression, in combina- ally, adding offspring data to other calibration sets had
neutral or negative effects. These results demonstratetion with partial least-squares regression, generated

nearly perfect predictions of leaf P between the refer- that researchers using NIRS should develop separate
calibrations for studies with hundreds of sugarcaneence chemistry analyses and NIRS for both categories of

offspring (one and four subsamples) (Table 4). Earlier in progeny rather than plan to analyze these progeny with
global calibrations that were developed from severalthe study, we were not making satisfactory progress with

the offspring calibration, so we increased the number clonally propagated genotypes.
Malley et al. (2000) set the criteria that for agriculturalof reference chemistry subsamples per NIRS sample

from one to four. However, the lack of improvement applications, it is desirable to have r 2 � 0.95 and RPD �
5.0. By removing unneeded wavelength segments fromin the original calibration for offspring with four sub-

samples vs. one subsample (Table 2) compared with the our original data, we surpassed these criteria for each
category in either a local or global calibration. A predic-near-perfect prediction equations developed by remov-

ing unneeded wavelength segments for both one and tion equation was developed for each category with r2 �
0.99 and RPD � 32.0. Martens Uncertainty regressionfour subsamples (Table 4) suggests that the problem

was not in reference chemistry variability. was a powerful tool for model development of sugarcane
leaf P with NIRS. The local and global approaches wereThe local calibrations and predictions of parents, fer-

Table 4. Calibration and prediction statistics for sugarcane leaf P concentration from near-infrared spectroscopy using Martens Uncer-
tainty for single categories (local calibrations) and selected combinations of categories (global calibrations).

Category n† s‡ SEC§ SECV¶ b# SEP†† RPD‡‡ r 2

g P kg�1

Parents (PA) 111 0.24 0.16 0.18 0.44 0.18 1.3 0.61
Offspring (one subsample) (O1) 242 0.32 0.01 0.01 0.99 0.01 32.0 0.99
Offspring (four subsamples) (O) 56 0.22 0.02 0.02 0.99 0.02 11.0 0.99
Fertilizer rate (F) 85 0.51 0.26 0.30 0.68 0.30 1.7 0.80
Water table (W) 125 0.21 0.16 0.17 0.34 0.17 1.2 0.55
PA � O 159 0.23 0.17 0.17 0.43 0.17 1.4 0.63
F � W 235 0.55 0.19 0.21 0.85 0.21 2.6 0.92
PA � F � W 371 0.49 0.06 0.01 0.99 0.01 49.0 0.99
PA � O1 � O � F � W 614 0.47 0.24 0.25 0.61 0.25 1.9 0.77

† n, number of samples. Unscrambler used all samples that contributed wavelengths segments, unlike WinISI, which did not use samples providing
similar information.

‡ s, standard deviation of reference chemistry values.
§ SEC, standard error of calibration.
¶ SECV, standard error of cross validation.
# b, regression coefficient.
†† SEP, standard error of prediction.
‡‡ RPD, ratio of SEP to s.
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mum P to a crop while obtaining optimum yields,
thereby minimizing environmental losses of P.
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